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A B S T R A C T   

Achieving a widely accepted definition of human intelligence has been challenging, a situation mirrored by the 
diverse definitions of artificial intelligence in computer science. By critically examining published definitions, 
highlighting both consistencies and inconsistencies, this paper proposes a refined nomenclature that harmonizes 
conceptualizations across the two disciplines. Abstract and operational definitions for human and artificial in
telligence are proposed that emphasize maximal capacity for completing novel goals successfully through 
respective perceptual-cognitive and computational processes. Additionally, support for considering intelligence, 
both human and artificial, as consistent with a multidimensional model of capabilities is provided. The impli
cations of current practices in artificial intelligence training and testing are also described, as they can be ex
pected to lead to artificial achievement or expertise rather than artificial intelligence. Paralleling psychometrics, 
‘AI metrics’ is suggested as a needed computer science discipline that acknowledges the importance of test 
reliability and validity, as well as standardized measurement procedures in artificial system evaluations. Drawing 
parallels with human general intelligence, artificial general intelligence (AGI) is described as a reflection of the 
shared variance in artificial system performances. We conclude that current evidence more greatly supports the 
observation of artificial achievement and expertise over artificial intelligence. However, interdisciplinary col
laborations, based on common understandings of the nature of intelligence, as well as sound measurement 
practices, could facilitate scientific innovations that help bridge the gap between artificial and human-like 
intelligence.   

1. Introduction 

Human intelligence ranks as one of psychology’s oldest and most 
vigorously debated dimensions (Deary, 2020; Jensen, 1998). Even at
tempts to achieve a commonly agreed-upon definition of human intel
ligence have proven difficult (Bartholomew, 2004; Sternberg & 
Detterman, 1986). The area of computer science has also produced 
numerous definitions of artificial intelligence (Legg & Hutter, 2007a; 
Monett & Lewis, 2018). Disagreements and inconsistencies in con
ceptualisations of constructs can be expected to hinder progress in a 
scientific field, if they lead to fragmented research efforts, impede the 
development of a unified theoretical framework, and create barriers to 
effective communication and collaboration among researchers (Flake & 
Fried, 2020; Kuhn, 1962). In the following, we review some published 
definitions of intelligence in the areas of psychology and computer sci
ence (i.e., human and artificial) with two aims: (1) highlight 

inconsistencies; and (2) suggest a common nomenclature that may 
facilitate scientific progress across both fields. With agreed upon con
ceptualisations and definitions of words and terms such as ‘intelligence’, 
‘achievement’, ‘expertise’, and ‘general intelligence’, the fields of psy
chology and computer science could achieve enhanced precision in 
research, foster more meaningful interdisciplinary dialogues, and 
potentially pave the way for scientific innovations. 

2. Constructs: psychological and computational 

Though disagreements abound on what human intelligence is, there 
is broad agreement that human intelligence is a psychological construct 
(Johnson, 2013; Plomin, 2018; Sternberg, 2012). A psychological 
construct is an abstract, unobservable, hypothetical entity inferred from 
postulated thoughts and observable behaviours, representing patterns of 
psychologically related phenomena (Cronbach & Meehl, 1955; Sijtsma, 
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2006). In plain language, a psychological construct is a concept devel
oped to describe a specific aspect of the mind or behaviour that is not 
directly observable, but is inferred from patterns in thoughts, feelings, 
and actions. In addition to intelligence, examples of well-established 
psychological constructs include anxiety (characterized by feelings of 
tension, worried thoughts, and physical changes associated with arousal 
of the autonomic nervous system; Reiss, 1997), self-esteem (which in
volves one’s overall subjective emotional evaluation of their own worth; 
Pyszczynski et al., 2004), and motivation (the process that initiates, 
guides, and sustains goal-directed behaviours; Touré-Tillery & Fishbach, 
2014). Constructs are recognised across many scientific disciplines, 
including physics (e.g., energy, which refers to an unobservable prop
erty possessed by all matter and systems, capable of transformation from 
one form to another; Papadouris & Constantinou, 2012); chemistry (e.g., 
chemical bond, which refers to the forces holding atoms together in 
molecules; Shahbazian & Zahedi, 2006), and biology (e.g., fitness, an 
organism’s ability to survive and reproduce in its environment; Grafen, 
2015). 

Artificial intelligence is not a psychological construct, as it does not 
originate from the same underlying human cognitive or emotional 
processes. Instead, artificial intelligence may be considered a computa
tional construct, as it is inferred from the outcomes of simulated aspects 
of human thought and decision-making, which are facilitated by data 
processing, machine learning techniques, and algorithmic principles 
(Prasad et al., 2023; Schoser, 2023). Additionally, artificial intelligence 
has evolved through computer science and engineering advancements 
(Kumar et al., 2023), marked by human-initiated intervention, intel
lectual effort, and purposeful innovation. By comparison, human intel
ligence has evolved primarily through natural selection, marked by 
organic adaptation and neurological optimization (Gabora & Russon, 
2011). 

Constructs are essential tools in psychological research and theory, 
as they help conceptualize and organize complex psychological phe
nomena in a way that allows for systematic investigation, prediction, 
and explanation.1 In practice, psychological constructs are inferred from 
responses to various stimuli and performance on tasks (Strauss & Smith, 
2009). To measure psychological constructs effectively, it is essential to 
have clear and specific definitions of those constructs (Messick, 1981; 
Slaney & Racin, 2013). Arguably, these principles should also apply to 
computational constructs, in order to help advance the field 
scientifically. 

Given the fundamental role constructs play in structuring our un
derstanding of complex phenomena, we propose abstract and opera
tional definitions for both human and artificial intelligence in the 
following section. Our definitions are not only grounded in their 
respective domains and established frameworks, but also reflect an 
appreciable degree of conceptual coherence to facilitate inter- 
disciplinary scientific discourse. 

3. What is human intelligence? 

Since its inception as a psychological attribute more than a century 
ago, many definitions of human intelligence have been proposed. In fact, 
when Sternberg and Detterman (1986) surveyed two dozen experts in 
the field of intelligence, two dozen different definitions were provided. 
Though definitions of human intelligence tend to differ in precise terms, 
there is a convergence around certain core ideas. Correspondingly, a 
total of 52 professors with expertise in intelligence signed an editorial 
that defined intelligence as “the ability to reason, plan, solve problems, 
think abstractly, comprehend complex ideas, learn quickly, and learn 
from experience” (Gottfredson, 1997, p. 13). This definition has since 
been recognised by additional experts in the field (e.g., Colom, 2020; 

Deary et al., 2006; Halpern, 2014). Furthermore, expert definitions 
generally align with implicit theories of human intelligence held by 
specialists in other fields and laypeople alike (Sternberg, 1985; Stern
berg et al., 1981). 

Despite the above, there is reason to be dissatisfied with commonly 
written and endorsed definitions of intelligence, such as that included in 
Gottfredson (1997), as well as other similar definitions in other sources 
(e.g., Humphreys, 1984; Wechsler, 1944).2 Specifically, such definitions 
are essentially a list of examples of subdimensions of intelligence, rather 
than representing an encompassing concept that recognises the large 
number of cognitive abilities that have been recognised over the years 
(Carroll, 1993; Schneider & McGrew, 2018). Arguably, an acceptable 
definition of intelligence needs to strike a delicate balance between 
being both sufficiently abstract and sufficiently detailed, in order to 
facilitate a theoretical understanding of what does and what does not 
constitute intelligence. 

Drawing upon Gignac (2018, p. 440), we define human intelligence 
as a human’s “maximal capacity to achieve a novel goal successfully 
using perceptual-cognitive [processes].” There are three important 
characteristics to this definition. First, when a person’s intelligence is 
considered, it is in the context of their maximal capacity to solve novel 
problems, not a person’s typically manifested intelligent behaviour. For 
instance, while some people may exhibit high intelligence levels on 
formal tests, they might not consistently apply this capacity in daily 
activities due to varying motivational factors (e.g., need for cognition; 
see von Stumm & Ackerman, 2013). Correspondingly, the correlation 
between overall intelligence and typical intellectual engagement is only 
approximately 0.45 (Chamorro-Premuzic et al., 2006). 

Secondly, the essence of human intelligence is closely tied to its 
application in novel contexts (Davidson & Downing, 2000; Raaheim & 
Brun, 1985). This entails solving problems that a person has not previ
ously encountered, rather than those with which they are already 
familiar. The concept of novelty in intelligence, and its distinction from 
academic achievement and expertise, is explored in greater detail 
further below. To foreshadow one of our key conclusions, we will pro
vide evidence to suggest that current AI systems may be suggested to 
have demonstrated artificial achievement, and perhaps artificial 
expertise in some cases, whereas there is far less evidence for artificial 
intelligence. 

Thirdly, human intelligence is underpinned by perceptual-cognitive 
functions (Thomson, 1919), which, at a basic level, encompass a range 
of mental processes, including attention, visual perception, auditory 
perception, and sensory integration (i.e., multiple modalities). In a wide 
array of contexts, one or more basic perceptual-cognitive processes 
would be required to identify and process relevant information, thereby 
enabling effective interaction with the environment. The capacity to 
process sensory inputs is necessary for the manifestation of human 
cognitive abilities, including subdimensions such as memory span, for 
example, as discussed further below. 

Though our recommended abstract definition of human intelligence 
may help elucidate its conceptual nature, it lacks concreteness to be 
sufficiently useful to guide the development of corresponding psycho
metric measures of intelligence. Echoing Humphreys (1984, p. 22): “A 
scientist has not merely a right but a duty to define concepts in a way 
compatible with measurement operations and with the data resulting 

1 It is acknowledged that there are contrasting perspectives on the precise 
nature and usefulness of constructs (Borsboom, 2023). 

2 Humphreys (1984, p. 243) defined intelligence as the “the entire repertoire 
of acquired skills, knowledge, learning sets, and generalization tendencies 
considered intellectual in nature that are available at anyone period of time.” 
Wechsler (1943, p. 3) defined intelligence as “the aggregate or global capacity 
of the individual to act purposefully, to think rationally and to deal effectively 
with his environment.” Sternberg (2011, p. 55) defined intelligence as “the 
capacity to learn from experience, using metacognitive processes to enhance 
learning, and the ability to adapt to the surrounding environment, which may 
require different adaptations within different social and cultural contexts.” 
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from those operations.” Consequently, drawing upon Gignac (2018, p. 
440), we define human intelligence operationally “as [a person’s] 
maximal capacity to complete a novel standardized task with veridical 
scoring using perceptual-cognitive [processes].” A novel standardized 
task implies a task (or test) for which the examinee has had no exposure, 
ideally not even awareness of the type of questions that will be asked 
during the testing session, so as to reduce the chances of preparation. 
Standardized implies a test for which there are clear instructions and 
procedures that are followed for all examinees (Sireci, 2020). As the 
primary purpose of a psychological test is to compare the performance of 
people (Cronbach, 1960), it is essential that all examinees have the same 
opportunities to perform, a situation facilitated by following procedures 
in the same manner for all. 

Finally, veridical scoring implies that the assessment and interpre
tation of responses are based on objective, verifiable criteria for which 
there is wide agreement. This approach helps ensure that the test scores 
are free from subjective biases and/or inconsistent grading standards, 
factors that may be expected to impact test score reliability and validity 
adversely.3 For example, a vocabulary test that included the word 
‘ambiguous’ might use a multiple-choice format where examinees select 
the correct definition from a set of options (e.g., “Having more than one 
possible meaning or interpretation.”). The scoring is veridical as it relies 
on predetermined, correct answers recognised and agreed upon by 
language experts. This ensures that each examinee’s understanding of 
the word is assessed against a consistent, objective standard. All valid 
tests of intelligence, including matrix reasoning tests, memory span 
tests, and quantitative reasoning tests, for example, include veridical 
scoring. 

4. What is artificial intelligence (AI)? 

Like human intelligence, many definitions of artificial intelligence 
have been proposed, as documented in comprehensive reviews (Legg & 
Hutter, 2007a; Monett & Lewis, 2018). Artificial intelligence is perhaps 
most commonly defined as “the ability of machines to perform tasks that 
typically require human intelligence” (e.g., Minsky, 1961; Prasad et al., 
2020; Schoser, 2023). As such a definition does not define human in
telligence, it is circular and lacks specificity. Furthermore, such a defi
nition may arguably be more accurately considered a goal of AI, not a 
definition of AI. 

In addition to the limited definition of artificial intelligence above, 
there are four definitions that have emerged within the literature that, to 
some degree, intersect the fields of psychology and computer science: 
Goertzel (2010), Chollet (2019), Wang (2022), and Legg and Hutter 
(2007b). Next, we present and evaluate each definition, taking into 
consideration the desirability to have definitions of human and artificial 
intelligence that are complementary. 

First, Goertzel (2010); Goertzel & Yu, 2014) defined artificial intel
ligence as a system’s ability to recognise patterns quantifiable through 
the observable development of actions or responses while achieving 
complex goals in complex environments. Goertzel’s reference to the 
ability to recognise patterns is consistent with human intelligence def
initions, particularly in the context of fluid intelligence (Hayes et al., 
2015) and logical-mathematical intelligence (Gardner & Hatch, 1989). 
However, Goertzel’s reference to ‘achieving complex goals’ falls short by 
not adequately differentiating between novel and non-novel goals. This 
distinction is crucial, as we elaborate further below, particularly when 
considering the difference between achievement or expertise and 

intelligence, which inherently involves the ability to deal with novel 
challenges. 

Second, Chollet (2019, p. 27) defined the intelligence of a system as 
“a measure of its skill-acquisition efficiency over a scope of tasks, with 
respect to priors, experience, and generalization difficulty.” At the core 
of Chollet (2019) definition is learning (skill acquisition), however, as 
we document further below, learning is only one of many subdimensions 
of human intelligence, indicating a need for a broader conceptualisation. 
Reference to generalisability in the Chollet (2019) definition is an 
important one, as it helps distinguish intelligence from achievement and 
expertise, as we describe further below. However, generalisability is not 
necessarily easy to identify in every context. Therefore, it may be more 
precise to state that intelligence is manifested when entities successfully 
complete tasks that are novel to them, as unpractised challenges are 
fundamental to the valid measurement of human intelligence (Davidson 
& Downing, 2000; Raaheim & Brun, 1985). 

Next, Wang (2022, p. 35) defined intelligence as “the ability of an 
information processing system to adapt to its environment while 
working with insufficient knowledge and resources.” The inclusion of 
the concept of adaptability in Wang (2022) definition is consistent with 
many abstract definitions of human intelligence (McIntosh et al., 2005; 
Pintner, 1923; Sternberg, 2011). However, the capacity to adapt to the 
environment may be excessively broad, given the number of different 
types of factors that can lead to adaptation. The term ‘insufficient 
knowledge’ in Wang (2022) definition conveys the notion of novelty, in 
the sense that the system was not specifically trained on the problem, 
which is a good contextualisation of a definition of intelligence, as 
achievement and expertise are not intelligence, as we detail further 
below. 

Finally, in a paper devoted to defining machine intelligence, Legg 
and Hutter (2007b, p. 402) defined intelligence as “an agent’s ability to 
achieve goals in a wide range of environments”, which is a definition 
that has core similarities to the Gignac (2018) definition we endorsed. 
However, there are some important differences. In particular, the defi
nition does not make clear that the goals must be novel, an essential 
criterion, as we noted above. Another characteristic of Legg & Hutter 
(2007b) definition is that it makes reference to “wide ranging environ
ments”, which Legg and Hutter (2007a, 2007b) suggest to imply per
formance across diverse situations, tasks, and problems, i.e., 
generalisability. Though our favoured definition of human intelligence 
aligns with this viewpoint, specifying ‘novel goals’ instead of ‘wide- 
ranging environments’ is more precise. Additionally, Legg and Hutter 
(2007b) definition does not explicitly acknowledge that intelligence 
should be regarded as an entity’s maximal capacity. Finally, Legg and 
Hutter’s (2007b) definition does not specify the mechanisms by which 
intelligent behaviour is underpinned, an important limitation with 
respect to differentiating between computational functionality and 
cognitive processes that underpin human intelligence. 

In light of the above, and considering the need to balance coherence 
and distinctiveness in psychology and computer science disciplines, we 
propose defining artificial intelligence abstractly as the maximal ca
pacity of an artificial system to successfully achieve a novel goal through 
computational algorithms.4 Our abstract definition of AI is identical to 
the definition of human intelligence we outlined above, with two ex
ceptions. First, we replaced ‘human’ with ‘artificial system’ to reflect the 
fundamental distinction between organic, human cognitive processes 
versus synthetic, computer-based operations inherent in AI systems. 
Secondly, novel goals are specified to be achieved through the use of 
computational algorithms, not perceptual-cognitive processes. A 

3 Test score reliability refers to the consistency (or precision) of test scores 
(Traub & Rowley, 1980). Practically, it determines the level of confidence that 
can be attributed to a case’s test score, such as a score of 100 on an IQ test. 
Validity pertains to whether a score can justifiably be interpreted to indicate a 
particular attribute (e.g., human intelligence; Messick, 1989). Reliability is a 
necessary but not sufficient condition for validity. 

4 In AI, a “goal” typically refers to a target state or outcome that the system is 
programmed to achieve (Russel & Norvig, 2016). These goals are set by human 
programmers and are not autonomously generated by the AI itself. For instance, 
a chess-playing AI has the ‘goal’ of winning the game, but this goal is a pro
grammed objective, not a product of the AI’s own volition or desire. 
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computational algorithm encompasses any set of rules or procedures 
used by a computer to solve a problem or accomplish a task (Cormen, 
2013). Computational algorithms in AI can range from simple, rule- 
based instructions to complex processes like those found in machine 
learning and deep learning (Raj, 2019). These algorithms can involve 
pattern recognition, data processing, decision-making, and learning 
from data, for example. 

Consistent with the operational definition of human intelligence we 
established above, we propose that artificial intelligence be defined 
operationally as an artificial system’s maximal capacity to complete a 
novel standardized task with veridical scoring using computational al
gorithms. The only difference between the human operational definition 
and the artificial definition is reference to an artificial system and 
computational algorithms. 

5. A note on AI metrics 

Given our operational definition of artificial intelligence, which 
makes reference to standardized tasks, we note that AI metrics is an 
emerging discipline focusing on AI systems’ performance measurement 
and evaluation which parallels psychometrics in psychology (Goertzel, 
2014; Welty et al., 2019). In AI metrics, ‘dataset’ refers to collections of 
problems for AI systems to solve, similar to ‘test banks’ in psychology, 
which consist of questions for evaluating human behaviour. Cronbach 
(1960, p. 21) defined a psychological test as “a systematic procedure for 
comparing the behaviour of two or more people.” Consequently, in AI 
metrics, a test may be defined as a systematic procedure for assessing 
and comparing artificial entities’ capabilities across various tasks or 
domains. Typically, AI test questions or problems have answers or 
optimal solutions that can be clearly identified, aligning with the 
concept of veridical scoring in intelligence measurement. 

A number of AI system capability tests have been published. For 
example, the HumanEval test (or dataset) is comprised of programming 
challenges that have been crowdsourced from a diverse group of con
tributors (Lu et al., 2010; Siddiq et al., 2023). Each challenge within the 
test is specifically crafted to assess an AI model’s proficiency in gener
ating programming code. Other examples include the AI2 Reasoning 
Challenge (ARC; Clark et al., 2018), a benchmark dataset specifically 
designed for question answering in the domain of science, TruthfulQA 
(Lin et al., 2021), a dataset aimed at measuring the truthfulness of AI 
models’ responses, particularly in situations where misconceptions or 
popular false beliefs are involved, and HellaSwag (Zellers et al., 2019), a 
dataset created to challenge AI models in commonsense natural lan
guage inference, using strategically crafted scenarios that are simple for 

humans but difficult for AI systems. The AI metric tests listed above are 
similar to how an IQ test battery comprises various cognitive subtests, 
each aimed at evaluating different aspects of human cognitive ability. 
Awareness of AI capability tests (and terminology) is useful for intelli
gence researchers, as it not only illuminates the methodologies used in 
AI evaluation but also underscores the potential for interdisciplinary 
research that leverages insights from both fields. 

Next, to help substantiate our definitions of intelligence, both human 
and artificial, we will expand upon earlier statements, emphasizing that 
intelligence is distinct from achievement, expertise, and adaptation. 
These distinctions are important when considering whether AI systems 
have, thus far, attained artificial achievement or expertise in certain 
domains, rather than intelligence. 

6. Intelligence is not achievement or expertise 

In simple terms, it has been suggested that intelligence is what one 
does when one does not know what to do.5 This definition highlights the 
importance of novelty to the entity when encountering and solving in
tellectual problems, a crucial component of valid intelligence testing in 
humans (Davidson & Downing, 2000; Gignac, 2018; Jensen, 1998). That 
is, it is imperative that participants are not made available prior specific 
knowledge of test items, effective goal management strategies, or 
practice with similar problems, in order to ensure the validity of the test 
as a measure of cognitive ability, rather than a reflection of learned 
responses or familiarity.6 As we show next, the assumption of novelty is 
violated in the context of the demonstration of achievement and 
expertise. 

Intelligence is a broad construct that facilitates the potential to 
achieve across multiple domains (Gottfredson, 2002). By comparison, 
achievement is a realization of this potential to varying degrees within a 
specific domain through instruction and/or practice (Preckel et al., 
2020). Though achievements may be recognised across a broad range of 
domains (e.g., academic, professional, sporting, etc.), academic 
achievement is perhaps the most commonly considered type of 
achievement by individual differences researchers. Academic achieve
ment refers to the level of success a person has attained in educational 

Fig. 1. Example Higher-Order Model of Intelligence. 
Note. Circles represent latent dimensions; squares represent observe variables (i.e., test scores); Gf = fluid reasoning abilities (Gf); Gc = comprehension knowledge 
abilities; Gv = visual intelligence abilities; Gq = quantitative knowledge; Gsm = Short-term memory; Gs = cognitive processing speed; Gt = Decision and reaction 
speed; Grw = reading and writing; Gkn = domain specific knowledge; Ga = Auditory processing; RG = general sequential reasoning; I = induction; RQ = quantitative 
reasoning; LD = language development; VL = lexical knowledge; K0 = general (verbal) information; Vz = visualization; SR = spatial relations; CS = closure speed; 
KM = mathematical knowledge; A3 = mathematical achievement, N = numeracy; MS = memory span; MW = working memory; EF = learning efficiency; P =
perceptual speed; RE = reaction time; RS = reading speed; R1 = simple reaction time; R2 = choice reaction time; R4 = semantic processing speed; RD = reading 
decoding; RC = reading comprehension; CZ = close speed; KE = general science information; A5 = geography achievement; K1 = general science information; PC =
phonetic coding; US = speech sound discrimination; UR = resistance to auditory stimulus distortion; (see Flanagan & Dixon, 2013; Schneider & McGrew, 2018). 

5 While the popular quote “Intelligence is what you use when you don’t know 
what to do” is often attributed to Jean Piaget, a definitive source for this 
statement has not yet been identified.  

6 “…if people had extensive practice or instruction on Raven problems, the 
goal management would become routine, thereby making the problems easier” 
(Carpenter et al., 1990, p. 428). 
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settings, typically measured through assessments including tests.7 

Correspondingly, achievement tests are specifically designed to evaluate 
a person’s knowledge and skills in a particular area or subject, reflecting 
what they have intentionally learned or been trained in. 

Two relatively well-known and comprehensive tests of academic 
achievement include the Programme for International Student Assess
ment (PISA; Turner & Adams, 2007), which assesses the reading, math, 
and science skills of 15-year-old students worldwide, and the National 
Assessment of Educational Progress (NAEP; Jones, 1996), which as
sesses the proficiency of American students in various subjects, such as 
mathematics, reading, science, and writing, at different grade levels.8 In 
the US, two narrower tests of academic achievement include the Bar 
Examination (Merritt & Cornett, 2020), which is a rigorous assessment 
that law graduates are required to pass in order to be licensed to practice 
law in a given jurisdiction, and the United States Medical Licensing 
Examination (USMLE; Johnson, 2006), which a candidate’s competence 
to apply medical knowledge, concepts, and principles necessary for 
effective patient care. 

Though intelligence test scores have been found to associate posi
tively and appreciably with academic achievement scores, they are not 
the same constructs (less than 50% shared variance; Lozano-Blasco 
et al., 2022; Pokropek et al., 2022). Furthermore, academic achievement 
tests are not intelligence tests, because people completing achievement 
tests would be expected to have studied specific content to help them 
answer questions or solve problems based on that knowledge, thus 
contravening the definitional expectation of novelty associated with our 
endorsed definitions of intelligence. 

The recognition of achievement as conceptually distinct from intel
ligence is important for at least two reasons: (1) intelligence is known to 
predict more substantially a wide array of outcome variables in life than 
any particular achievement (Gottfredson, 2002)9; and (2) artificial in
telligence systems are often trained on the content included in the tests 
used to measure their capacity, which, therefore, cannot reflect the 
system’s intelligence, i.e., ability to demonstrate novel problem-solving 
ability. We provide evidence for statement (2) in a subsection further 
below. To foreshadow again, we will conclude that current AI systems 
demonstrate achievement, and perhaps expertise, whereas there is 
questionable evidence for the demonstration of artificial intelligence, as 
defined above. 

Whereas achievement reflects the realization of one’s potential to 
varying extents within a specific domain, expertise may be defined as 
the mastery of a comprehensive and structured set of knowledge ac
quired through extensive practice and experience, leading to an excep
tionally high level of performance (Chi, 2006; Ericsson, 2006). There are 
instances where individuals have significantly improved their scores on 
cognitive tasks through extensive practice. For example, Chase and 
Ericsson (1982) described two college students (DD and SF) who 
increased their digit memory spans to 68 and 82 after approximately 
250 h of practice. DD increased their digit span to 106 digits after an 
additional 350 h of practice (Ericsson & Staszewski, 1989). The typical 

adult has a digit span of approximately seven digits (Gignac & Weiss, 
2015). Evidence for notable increases in cognitive performance after 
extensive practice in other areas, in the absence of any obvious benefits 
to other cognitive domains, have been documented, including memory 
span for chess positions (Gobet & Simon, 1998; Smith et al., 2021), 
spatial mapping ability among London taxi drivers (Woollett et al., 
2009), and calculation prodigies (Jensen, 1990). 

Importantly, improvements in cognitive performance in one area 
through training does not yield increases in performance in other 
cognitive abilities (Gobet & Sala, 2023; Sala & Gobet, 2019). Often, so 
limited are even near-transfer benefits that Norris et al. (2019) reported 
that training digit span failed to enhance letter span. Even when digit 
span was trained visually, the improvements failed to extend to the same 
digit task presented auditorily, highlighting the task-specific nature of 
cognitive training benefits. 

We note that in computer science, some artificial systems are rec
ognised as demonstrating expertise. For example, the mixture-of-experts 
(MoE) model (Nguyen & Chamroukhi, 2018). In MoE models, each 
‘expert’ is a neural network trained on a specific aspect of a larger task. 
These networks, through their unique architecture and training, become 
highly proficient in their specialized domains, collectively contributing 
to the AI system’s broader capabilities. This approach mirrors how 
human experts develop deep knowledge in specific areas through 
focused practice and experience. While AI systems differ in the degree to 
which they have been trained (see Lake et al., 2014, for an example of 
one-shot learning10), it may be contended that the development of 
artificial achievement and/or expertise, as opposed to artificial intelli
gence, plays a central role in enhancing a typical AI model’s ability to 
execute human-like cognitive tasks.11 

7. Intelligence is not adaptation 

Human intelligence has been defined conceptually as a person’s ca
pacity to adapt to the environment successfully (Neisser et al., 1996; 
Sternberg, 2011). The principle of adaptive capacity is also central to 
several conceptualizations and definitions of artificial intelligence. For 
example, in an article devoted to defining artificial intelligence, Wang 
(2019, p. 17) endorsed the following definition of intelligence: “the 
capacity of an information-processing system to adapt to its environ
ment while operating with insufficient knowledge and resources.” 
Russell and Norvig (2010) also emphasized the role of adaptation in 
intelligent agents, noting that these agents must be able to operate 
autonomously and adjust their behaviour based on changes in their 
environment. At first glance, these conceptualizations suggest a com
mon ground between human and artificial intelligence, positing adapt
ability as a key facet of intelligent behaviour, indicative of an entity’s 
ability not just to react, but also to learn and evolve within varied 
environmental contexts. 

However, there are reasons not to consider adaptation as a defining 
characteristic of intelligence. First, evidence for adaptation to an envi
ronment is arguably too broad a concept to reflect intelligence. For 

7 By comparison, academic attainment refers to the level of success a person 
has attained in educational settings, as represented by educational awards (e.g., 
certificates, diplomas, degrees, etc.). Intelligence predicts both academic 
achievement and attainment positively (Keage et al., 2016; Lozano-Blasco et al., 
2022).  

8 The Woodcock-Johnson IV Tests of Achievement (WJ IV ACH; Schrank, 
Mather, & McGrew, 2014) would be better described as an IQ test, not a test of 
achievement, because the subtests include test item content that people may not 
have been specifically trained upon.  

9 We note that while achievement is not intelligence, there is evidence that 
human intelligence may develop, to some degree, through formal education 
(Ritchie & Tucker-Drob, 2018), though the effects may be largely restricted to 
certain segments of the population (Peng & Kievit, 2020). Further complicating 
matters, testing co-development hypotheses statistically in an unambiguous 
manner is challenging (Curran & Hancock, 2021; Lüdtke & Robitzsch, 2022). 

10 Lake et al. (2014) applied a Hierarchical Hidden Markov model (HHMM) to 
classify (experiment 1) and generate (experiment 2) new (single-trial) speech 
sounds based on the Japanese language. Such tasks would require phonetic 
coding (PC) and speech sound discrimination (US) stratum I abilities within the 
Cattell-Horn-Carroll model of intelligence (McGrew, 2009).  
11 Several AI models, such as Grounded Language Acquisition models 

(Rasheed & Amin, 2016; Vong et al., 2024), eschew extensive text pre-training. 
Instead, by learning language through interaction and observation of the 
physical world, these models mimic human cognitive processes more closely, 
potentially advancing the realization of artificial intelligence. Additionally, 
PoseGPT (Feng et al., 2023) may have the capacity for limited reasoning in a 
narrow context (3D human body poses). These AI system developments do not 
undermine the primary goal of this paper, i.e., to develop a nomenclature for 
intelligence research across the psychology and computer science disciplines. 
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example, the human skin’s ability to tan in response to sun exposure is 
an adaptive biological process driven by environmental factors, rather 
than a manifestation of cognitive ability. A more behaviourally relevant 
example is bird migration, a successful adaptation to the environment, 
but which is partly instinctual (i.e., genetically pre-programmed; Sweta 
et al., 2019), rather than the result of commonly recognised dimensions 
of cognitive ability. Secondly, successful adaptation is somewhat sub
jective and nuanced. For example, many human cognitive biases, such as 
confirmation bias, are generally considered to be adaptive tendencies; 
however, it is well-documented that these biases frequently lead to poor 
decision-making (Croskerry et al., 2013). Ultimately, the capacity to 
adapt to an environment should not be considered a defining charac
teristic of intelligence, as successful adaptation can be the result of 
primarily non-cognitive and/or instinctive characteristics, as well as 
unclear in some cases. 

With human and artificial intelligence defined, we next define and 
describe general intelligence: a term used extensively in both psychol
ogy and computer science, though, as we show, with typically different 
understandings. 

8. What is general intelligence (g)? 

In psychology, general intelligence is a theoretical construct postu
lated to account for the empirical observation that test scores from a 
diverse collection of intelligence tests tend to correlate with each other 
positively (Jensen, 1998). In practical terms, people who tend to 
perform relatively well on verbal tasks also tend to perform relatively 
well on spatial tasks, memory span tasks, quantitative tasks, etc. 
Laypeople tend not to appreciate the degree of correspondence in per
formance across cognitive abilities (Rammstedt & Rammsayer, 2000). 
The relatively consistent order of people’s performance across a wide 
variety of tasks (and modalities) yields a ‘positive manifold’: loosely 
speaking, a pattern of widespread positive correlations among different 
cognitive abilities (mean r ≈ 0.45 to 0.50; Detterman & Daniel, 1989; 
Walker et al., 2023). 

In human psychology, general intelligence (symbolized as ‘g’) is a 
proposed construct to represent the empirical observation that individ
ual differences in cognitive abilities correlate with each other positively, 
yielding a general factor when factor analysed (i.e., positive factor 
loadings from all tests; Jensen, 1998). Based on a factor solution derived 
from a factor analysis of an inter-ability correlation matrix, general 
factor scores can be derived for each case in the dataset. Such scores may 
be considered to represent ‘psychometric g’ (Jensen & Weng, 1994,).12 

Some have theorized that mental energy (Spearman, 1927) or sus
tained concentration (Lykken, 2005) may be the mechanism by which g 
arises. In a more developed theory of intelligence that recognises g, 
Anderson (1992, 2001) contended that intelligence can be seen through 
the lens of different types of cognitive capacities, such as verbal and 
spatial, which at their core are uncorrelated because they are served by 
dedicated processing modules designed for specific tasks. However, the 
empirical observation that these abilities are positively correlated in 
individuals suggests a common underlying factor. This commonality, 
according to Anderson, is due to a shared information processing 
mechanism that underpins both types of primary cognitive abilities 
(verbal and spatial). Anderson emphasized that individual differences in 
the speed of this basic processing mechanism plays a crucial role in 
binding these diverse abilities together, contributing to the manifesta
tion of g. 

Jensen (2006) also considered processing speed, as measured by 

reaction time for example, may play a significant role in the emergence 
of g, because it reflects the basic efficiency and rapidity with which the 
brain can process information, perform cognitive tasks, and respond to 
stimuli. Faster processing speeds are thought to facilitate more efficient 
learning, problem-solving, and decision-making, which are key com
ponents of general intelligence.13 Furthermore, Jensen (1998) asserted 
that it was “inescapable” (p. 249) that there must be generality of neural 
function to mediate positively correlated individual differences in 
cognitive abilities. For example, number of neurons, neural efficiency, 
or neural conduction velocity. 

Despite the above, Jensen (1998) asserted that it is a misunder
standing to consider g a psychological process at all. Psychological 
processes can be identified and examined with a single person. For 
example, Ebbinghaus uncovered fundamental truths about learning and 
memory through self-experimentation, conducting studies where he was 
the sole subject (Postman, 1968). By contrast, general intelligence 
cannot be identified or examined, in the absence of individual differ
ences data, as it is the variation between people that is core to its 
observation. Correspondingly, Jensen (1998, p. 74) stated that: “g may 
be thought of as a distillate of the common source [shared variance] of 
individual differences in all mental tests, completely stripped of their 
distinctive features of information content, skill, strategy, and the like.” 

In contrast to Jensen (1998) focus on variation between people, 
common variance in cognitive abilities can be examined from a within- 
person framework. A within-person approach can be insightful, as it 
offers an alternative approach to evaluate the plausibility of a common 
dimension that may impact performance across a number of different 
cognitive capacities. In an empirical investigation, Schmiedek et al. 
(2020) administered nine tests of cognitive ability (three each for 
working memory, processing speed, and episodic memory) to a sample 
of 101 participants who completed the tests on 100 occasions across a six 
month period. As a within-person investigation, Schmiedek et al. (2020) 
were specifically interested in the slight changes in cognitive perfor
mance across testing occasions, independently of the overall trend of 
increasing test scores that would be expected from repeated testing. 
Though the strength of the covariance between abilities was reduced in 
magnitude when examined from a within-person perspective, in com
parison to the between-person data, there was nonetheless notable 
positively shared variance, especially between the working memory 
capacity and episodic memory latent variables. Though Schmiedek 
et al.’s (2020) sample was relatively small, and their measures lacked 
sufficient diversity to measure general intelligence respectably, the 
notable positive covariance between working memory and episodic 
memory within individuals reinforces the idea that a common cognitive 
foundation may underpin diverse abilities, i.e., affirming the plausibility 
of g as substantive psychological dimension. 

In contrast to how general intelligence is typically conceptualised in 
psychology, artificial general intelligence definitions tend to reflect two 
perspectives: (1) functional-equivalence; and (2) capability-based. 
Below, we review the two categories of AGI conceptualisations, and 
we note how and why they should not be considered appropriate defi
nitions of AGI.14 

With respect to the functional-equivalence perspective, the term AGI 
is commonly defined as a quantitative level of artificial intelligence, 
specifically, a human level of intelligence (Amazon Web Services, 2024; 
Demasi et al., 2010; McLean et al., 2023; Obaid, 2023; Rayhan et al., 
2023). Though the observation of AI at the level of typical human 

12 Many recognise the distinction between g, a theoretical construct advanced 
to account for the positive manifold, and psychometric g, a statistical repre
sentation of general intelligence typically derived from factor analyses con
ducted upon a correlation matrix of diverse subtests of cognitive abilities 
(Jensen, 1998). 

13 Some computer scientists consider efficiency a fundamental characteristic 
of artificial intelligence (Wang, 2006).  
14 Our review of definitions of AGI is not exhaustive. For example, Ozkural 

(2022) suggested that artificial general intelligence may be considered a 
mechanism capable of effectively performing operator induction, i.e., synthe
sizing data, generating hypotheses, and making predictions in a computation
ally efficient manner. 
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intelligence would be a remarkable technical accomplishment, defining 
AGI in such a way is inconsistent with descriptions of human general 
intelligence, as described above. Furthermore, human general intelli
gence, or psychometric g, is observed across all levels of human ability 
(Breit et al., 2022; Detterman & Daniel, 1989). Similarly, general in
telligence factors have been identified in various species, including dogs 
(Arden & Adams, 2016), deer (Pastrana et al., 2022), and orangutans 
(Damerius et al., 2019). This cross-species observation suggests that g 
transcends mere cognitive complexity, highlighting its universal rele
vance across different levels of intelligence. Therefore, considering 
existing theory and empirical evidence on general intelligence, AGI may 
be expected to be observed across essentially the whole spectrum of AI 
system performance. Such a hypothesis could be tested empirically by 
administering a series of AI system performance tests to a diversity of AI 
systems, as we discuss further below. 

With respect to the capability-based perspective, AGI is con
ceptualised as an AI system’s ability to perceive, possess knowledge, 
understand, learn, and function either partially or completely autono
mously in a variety of environments and tasks (Chollet, 2019; Huang, 
2017; Maruyama, 2020; Mindt & Montemayor, 2020; Morris et al., 
2023). As described above, such definitions are essentially consistent 
with definitions of intelligence (e.g., Gottfredson, 1997), not specifically 
general intelligence. Consequently, capability-based definitions are 
arguably not useful to distinguish AGI from AI. Furthermore, these 
conceptualisations of AGI do not recognise that the observation of AGI, 
like human general intelligence, arises from a) individual differences in 
AI system performance; and b) the observation of positive correlations 
between task performance across AI systems. 

Like human intelligence, there are appreciable individual differences 
in AI model performance across various tasks (DeRose et al., 2020; 
Kumari, 2023). Consequently, drawing on the human general intelli
gence literature, artificial general intelligence may be defined as a 
theoretical construct representing the shared variance in AI systems’ 
performance, demonstrated through their positively inter-correlated 
capabilities across a diverse range of AI metric tasks and multiple mo
dalities (e.g., verbal and spatial). To our knowledge, our definition of 
AGI introduces a novel perspective that enhances alignment between the 
fields of psychology and computer science. As we discuss further below, 
there is some preliminary empirical evidence supportive of AGI as 
conceptualised here. Next, we describe empirically testable models of 
intelligence that both include and exclude general factors of 
intelligence. 

9. Models of intelligence and g 

Arguably, the most commonly recognised model of intelligence is the 
Cattell-Horn-Carroll model (CHC; Schneider & McGrew, 2018), a 
comprehensive framework that integrates a wide range of cognitive 
abilities. The CHC model categorises abilities across three strata, each 
representing a different level, or breadth, of cognitive functioning. At 
stratum I are abilities that are narrow in nature, representing specific 
cognitive tasks and processes. Examples include induction (I), reading 
comprehension (RC), spatial relations (SR), and working memory (MW). 

Stratum II is the intermediate level and consists of relatively broad 
cognitive abilities in comparison to those abilities of Stratum I. Stratum 
II abilities arise because of relatively highly-correlated clusters of nar
row stratum I abilities. Schneider and McGrew (2018) review listed a 
total of 17 stratum II abilities. In addition to the relatively well-known 
fluid reasoning factor (Gf), there are four factors that represent 
acquired-knowledge abilities, including comprehension–knowledge 
(Gc), domain-specific knowledge (Gkn), reading and writing (Gw), and 
quantitative knowledge (Gq). There are five specific sensory abilities, 
including visual (Gv), auditory (Ga), olfactory (Go), tactile (Gh), and 
kinesthetic (Gk). There are three memory factors, including working 
memory capacity (Gwm), learning efficiency (Gl), and retrieval fluency 
(Gr). There are also three speed-relevant abilities, including reaction/ 

decision time (Gt), processing speed (Gs), and psychomotor speed (Gps). 
Finally, there is a psychomotor ability factor (Gp). The correlations be
tween dimensions at stratum II are notably strong, typically in the r ≈
0.60 to 0.65 region (Bryan & Mayer, 2020). That is, people who have 
high reasoning ability (Gf) also tend to have higher levels of 
comprehension-knowledge (Gc), for example. 

Finally, stratum III is the top level, representing general intelligence 
or ‘g’. It may be considered a representation of overall cognitive ability 
(Carroll, 2003). To date, there are two approaches to the representation 
of general intelligence: (1) g as superordinate factor; and (2) g as breadth 
factor (Beaujean, 2015; Gignac, 2008). A visual representation of a 
higher-order version of the CHC model is depicted in Fig. 1. It can be 
seen that g is at the top with arrows leading to the stratum II abilities. 
Theoretically, the fact that the arrows lead from g to the stratum II 
abilities implies that g is the cause of the inter-correlations between the 
stratum II cognitive ability dimensions, even though some researchers 
do not believe that g is a cognitive process, as discussed above. 

An alternative representation of a hierarchical model is the bifactor 
model, where g is a first-order factor like the stratum II dimensions, 
however, the g factor is associated with much greater breadth than the 
stratum II dimensions, and the stratum II dimensions are nested within 
the g factor (see Fig. 2). In the bifactor model of intelligence, g is 
considered to be a more direct cause of the inter-correlations between 
stratum I abilities/tasks, and the stratum II factors are all orthogonal to 
each other (and g). Though there is some empirical evidence in favour of 
a bifactor representation of human cognitive abilities (Cucina & Byle, 
2017), there is as yet no comprehensive evidence supporting either the 
higher-order (superordinate) or breadth (bifactor) representation of g. 
Across a wide variety of IQ test batteries and samples, the general factor 
of intelligence is typically observed to account for 35 to 50% of the total 
variance in cognitive ability test performance (Canivez & Watkins, 
2010; Chang et al., 2014; Dombrowski et al., 2018). 

It would be misleading to suggest that there is consensus on the 
empirical and theoretical plausibility of g at all. Some prefer to consider 
a correlated factor model of intelligence, whereby there is a large 
number of inter-associations between the stratum II dimensions, as 
opposed to an overarching general factor (e.g., Horn, 1989).15 An even 
more substantially disaggregated model of intelligence is a network 
model whereby only the inter-associations between the stratum I abili
ties are specified. According to network models of intelligence, cognitive 
abilities are seen more as a web of interconnected skills and processes, 
rather than being dominated or driven by a general factor or even group 
factors (van der Maas et al., 2017). In this view, intelligence is con
ceptualised as a dynamic system where various narrow cognitive abili
ties interact and influence each other in complex ways. The process 
overlap theory of intelligence is consistent with such a view (Kovacs & 
Conway, 2016). There is some psychometric (McGrew et al., 2023) and 
cognitive neuroscience evidence (Luppi et al., 2022) supportive of a 
network model conceptualisation of individual differences in 
intelligence. 

A visual representation of a network model of intelligence is pre
sented in Fig. 3. The circles represent narrow dimensions of ability. For 
example, VL represents lexical knowledge and RQ represents quantita
tive reasoning. Lines between circles represent shared variance, i.e., 
correlations. Furthermore, larger correlations are represented by pro
gressively thicker lines. In network models, three or more nodes that are 
relatively highly intercorrelated with each other are often shown to have 
the same colour. In Fig. 3, there are three communities of narrow abil
ities (i.e., Gf, Gc, and Gv). 

As a general statement, AI system research tends not to consider 

15 John B. Carroll consistently recognised the plausibility of a stratum III g 
factor, whereas other CHC theorists are more equivocal about the g factor, 
recommending researchers/practitioners to ignore it, if they prefer a correlated- 
factor model perspective (Schneider & McGrew, 2012). 
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taxonomies or models of ability as commonly as human intelligence 
researchers do. Exceptions include the Soar and LIDA architectures (or 
models) to represent AI system abilities. Ichise (2016) found that while 
the Soar and LIDA models shared some dimensional overlap with the 
CHC model of intelligence neither Soar nor LIDA were nearly as 
comprehensive. Consequently, it may be advantageous for computer 
scientists to adopt the CHC model, or a variation thereof, in AI system 
research, as it provides a comprehensive framework to evaluate and 
possibly develop AI systems with capabilities that mirror human 
cognitive abilities. It is noteworthy that many of the numerous AI system 
benchmark tests can, theoretically, be categorised within the diverse 
strata of the CHC model of intelligence. For example, Hellaswag (Zellers 
et al., 2019), which contains items relevant to commonsense reasoning 
to predict the most plausible continuation of a scenario, may be 
considered a measure of Gf, and Winogrande (Sakaguchi et al., 2021), 
which contains items primarily relevant to reading comprehension, may 
be classified as a measure of Grw. 

10. Multidimensionality of intelligence 

Although the concept of general intelligence remains controversial, 
there is a broad agreement among scholars that human intelligence is 
multi-dimensional (Neisser et al., 1996; Schneider & Newman, 2015). 

This is an important consideration, as some have argued that artificial 
intelligence represents essentially a single capacity. For example, the 
capacity to learn (e.g., Chollet, 2019) or to adapt to the environment (e. 
g., Wang, 2022). However, in psychology, the general factor of intelli
gence is derived from a diverse array of cognitive abilities (Jensen, 
1998). Furthermore, explicitly recognising the multidimensionality of 
intelligence, whether alongside a general factor or not, is important, as it 
facilitates a more plausible depiction of how cognitively complex phe
nomena likely arise, including the manifestation of complex cognitive 
(or artificial) functions. 

First, consider inspection time, which represents the minimum time 
required for the presentation of a stimulus on a screen for a person to 
detect a target (e.g., with 90% accuracy). In the typical inspection time 
measurement paradigm, the specific task is for a person to identify 
which of one of two lines presented vertically on a screen is the longest 
(Nettelbeck et al., 1996; Nettelbeck & Lally, 1976). Thus, the task relies 
upon essentially no prior knowledge, nor does it depend upon the 
demonstration of learning. A typical healthy adult inspection time is 
approximately 45 milliseconds, with appreciable individual differences 
(SD = 19; Crawford et al., 1998). Many studies have demonstrated a 
correlation between shorter inspection times and higher levels of more 
complex cognitive abilities, with a correlation coefficient of approxi
mately − 0.50 (Grudnik & Kranzler, 2001). Individual differences 
research suggests that inspection time is mostly associated with pro
cessing speed (Gs) and visual intelligence (Gv), with some unique effect 
associated with general intelligence (Crawford et al., 1998; O’Connor & 
Burns, 2003). 

The ability to quickly perceive and interpret basic visual information 
is undeniably crucial for intelligent behaviour, as demonstrably evident 
in activities like human and AI-assisted motor vehicle driving, where 
rapid visual processing is essential (Roenker et al., 2003; Zhao, Zhao, 
et al., 2023; Zhao, Zhou, et al., 2023). Correspondingly, human intelli
gence has been found to be a positive predictor of driving ability in both 
driver simulated and non-simulated environments (Anderson et al., 
2005; Ledger et al., 2019; Smith & Kirkham, 1982). Importantly, while 
processing speed is a recognised key factor in human intelligence 
(Jensen, 2006; Wechsler, 2008), the AI literature defining intelligence 
and AGI seldom addresses speed of information processing in a manner 
analogous to it treatment in human intelligence research, highlighting a 
key conceptual difference between these disciplines. Given the promi
nence with which processing speed is often considered a central feature 
that differentiates computer systems (Wang, 2020), it is interesting to 
speculate that variability in AI system efficiency may play a role in the 
possible observation of an artificial general intelligence factor. 

Further support for conceptualizing intelligence as a construct 
broader than any single ability is found in cascading models of cognitive 
abilities. These models represent a hierarchical structure where foun
dational cognitive processes underpin more complex abilities. Empirical 
estimates (e.g., beta-weights) from well-fitting cascading models can 
shed light on the emergence of cognitive abilities, illustrating how basic 
intellectual processes gradually underlie more sophisticated forms of 

Fig. 2. Example Bifactor Model of Intelligence. 
Note. Circles represent latent dimensions; squares represent observe variables (i.e., test scores); see Fig. 1 note for acronym spellings. 

Fig. 3. Example Network Model of Intelligence Based on Nine CHC Stratum I 
Abilities. 
Note. CS = closure speed; SR = spatial relations; Vz = visualization; I = in
duction; RQ = quantitative reasoning; RG = general sequential reasoning; LD =
language development; K0 = general (verbal) information; VL = lexical 
knowledge; mauve coloured circles represent fluid reasoning abilities (Gf); 
yellow coloured circles represent comprehension knowledge abilities (Gc); blue 
coloured circles represent visual intelligence abilities (Gv). 
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intelligence. 
As an example, Fry and Hale (1996) measured processing speed 

ability, working memory capacity, and reasoning ability in a sample of 
children, adolescents, and young adults aged 7 to 19 years. They re
ported path analytic evidence in favour of a cascading model of abilities 
that lead from processing speed to working memory capacity, and 
working memory capacity to reasoning ability, as depicted in Fig. 4. 
Therefore, reasoning ability, a complex cognitive function, is partially 
grounded in relatively simpler processes like working memory and 
processing speed. Exploring whether AI systems exhibit a comparable 
cascading model of abilities could offer critical insights into their 
emergent dynamics. Such an understanding could inform the design of 
AI architectures that emulate the hierarchical progression of human 
cognitive development, thereby potentially improving their proficiency 
in complex tasks through a structured foundation in fundamental 
processes. 

Additionally, consider face processing abilities, dimensions known to 
associate positively with g (Walker et al., 2023), and a significant current 
focus of AI system research (Hupont et al., 2022). Walker et al. (2023) 
provided both theoretical and empirical evidence for individual differ
ences in human face processing abilities as consistent with simpler 
processes leading to more complex processes. Specifically, Walker et al. 
(2023) measured face detection ability (the ability to detect a face 
within a visual scene), face perception ability (the ability to distinguish 
faces within a group), face memory ability (the ability to recall a face) 
and face emotion expression recognition ability (the ability to correctly 
identify emotional expressions). Based on the correlations between 
corresponding latent variables, Walker et al. (2023) found that a 
cascading model of face processing abilities, leading from face detection 
to face perception to face memory to face emotional recognition ability, 
was consistent with the data (see Fig. 5). The findings by Walker et al. 
(2023) underscore the hierarchical nature of face processing abilities, 
suggesting that advancements in AI research on face recognition could 
benefit from adopting a similar cascading model. This approach might 
enhance AI’s capability in complex face-related tasks by mirroring the 
stepwise development from basic detection to nuanced emotional 
recognition observed in humans. 

In practice, cascading models of AI could be tested empirically, if 
there are positive inter-correlations between AI system performances (i. 
e., correlations between AI benchmark test scores). Beyond potentially 
establishing AI as multi-dimensional in nature, the empirical establish
ment of AI cascading models of abilities may foster a more integrated 
understanding of AI, one that may mirror the dynamic complexity of 
human intelligence to some extent. However, it is noteworthy that some 
large language models (LLMs) can execute high level language pro
cessing in some contexts (e.g., generate coherent narratives), but are 
surprisingly weak at executing other tasks humans find relatively easy 
(e.g., implicature; see Ruis et al., 2022), suggesting that LLMs may 
exhibit artificial achievement (i.e., independent skills acquired through 
specific training) rather than artificial intelligence. 

In summary, definitions of AI (or AGI) that focus exclusively on a 
single dimension of ability (e.g., learning) risk oversimplifying its 
fundamental nature: an oversight that can foster misconceptions about 
AI’s complexity and potentially impede the development of AI systems. 

11. Learning and intelligence 

A substantial amount of AI system development is based on machine 
learning (Merkhofe et al., 2023; Singh et al., 2022), a fact that may 
motivate conceptualisations of artificial intelligence as the capacity to 
learn (Chollet, 2019). An exclusive focus on learning ability as the 
defining characteristic of artificial intelligence would be at odds with 
contemporary models of human intelligence, which acknowledge 
numerous subdimensions of cognitive abilities, only one of which is 
learning (Schneider & McGrew, 2018). Correspondingly, our definitions 
of intelligence and general intelligence do not specifically reference 
learning. Because machine learning is a central component in AI system 
development, and learning is a long researched construct in psychology, 
including a recognised indicator of intelligence (Schneider & McGrew, 
2018), we offer some discussion on the commonalities and distinctions 
between human and artificial learning. 

Like intelligence, learning is a construct: it is not observed directly, 
but inferred from the observation of inter-related behaviours. Borrowing 
from Jensen (1989, p. 40), human learning may be defined as a 
demonstrable change in the probability or intensity of a specific 
behaviour or behaviour potential, underpinned by neurological pro
cesses and cognitive strategies in response to various stimuli. This 
change excludes factors unrelated to learning, such as instinct or phys
ical maturation. By comparison, AI learning may be defined as a 
demonstrable change in the probability or intensity of a specific 
response or decision-making potential in an artificial system, under
pinned by computational algorithms and data. This change excludes 
factors unrelated to learning, such as programming updates or hardware 
modifications. Our complementary definitions of learning emphasize 
the role of the probability of responses in both human and AI domains, 
while also accounting for the distinct nature of learning in each domain. 

Within the CHC model of intelligence, learning represents only a 
relatively small facet of the model. Specifically, according to Schneider 
and McGrew (2018), learning is represented by a relatively small stra
tum II ability known as a learning efficiency (Gl),16 a dimension that 
represents “how much time and effort is needed to store new informa
tion in secondary memory [e.g., long-term memory]” (p. 97). Associa
tive memory is considered an indicator (stratum I ability) of learning 
efficiency (Gl). A commonly used test of associative memory consists of 
face-name pairings (Rubiño & Andrés, 2018). In face-name pairings test, 
participants first view a series of face-name pairs and then, in the test 
phase, they are shown the faces again and asked to recall the associated 
names. This assesses their ability to form and retrieve associations, 
reflecting their learning efficiency in encoding and storing associative 
information in long-term memory. As the visual processing capacities of 
AI systems develop, their associative memory capacity could be 
measured with the validated face-name pairing test. 

In addition to associative memory, meaningful memory is considered 
an indicator of Gl. Meaningful memory refers to the ability to remember 
information that is significant and conceptually rich, as opposed to rote 
memorization of arbitrary or unrelated facts. A psychometrically 

Fig. 4. Cascading Model of Cognitive Abilities. 
Note. Adapted from Fry & Hale, 1996; PS = processing speed; WMC = working 
memory capacity; RA = reasoning ability; both coefficients were statistically 
significant, p < .05. 

Fig. 5. Cascading Model of Cognitive Abilities: Face Processing. 
Note. Adapted from Waller et al., 2023; FD = Face Detection; FP = Face 
Perception; FM = Face Memory; ER = Expression Recognition; coefficients in 
bold were statistically significant, p < .05. 

16 The better known stratum II Glr group-factor once comprised both learning 
efficiency and learning retrieval, but underwent a formal separation in 
Schneider and McGrew (2018). 

G.E. Gignac and E.T. Szodorai                                                                                                                                                                                                               



Intelligence 104 (2024) 101832

10

established measure of meaningful memory is the Story Recall subtest 
within the Woodcock-Johnson IV (Schrank, Mather, & McGrew, 2014; 
Schrank, McGrew, & Mather, 2014). In the Story Recall test, participants 
are presented with a prerecorded short prose story, typically one to three 
paragraphs in length. They are then tasked with recalling and recount
ing the story in their own words. This free recall is assessed twice: once 
immediately following the presentation of the story and again after a 40- 
min delay, to evaluate both immediate and delayed meaningful memory 
recall capabilities. It should be acknowledged that the Story Recall 
subtest has been reclassified several times over time, suggesting a 
certainly level of instability in the conceptualisation and measurement 
of learning within contemporary human intelligence research. None
theless, given their sophisticated language processing capabilities, cur
rent LLMs could undertake the validated Story Recall test, with many 
expected to exhibit strong performance in both immediate and delayed 
recall tasks. 

Research indicates that higher general intelligence enhances 
learning outcomes, with more intelligent individuals showing better 
responses to training (Vaci et al., 2019). Furthermore, having more prior 
knowledge (Gk) also improves learning on new tasks (Thurn et al., 
2022). This research underscores the position that learning should be 
considered only one aspect of intelligence, one that arises from a com
plex interplay between other dimensions of cognitive abilities. It also 
raises an important question for the area of AI – can the same sorts of 
facilitation effects be observed? 

A remarkable instantiation of human learning is the acquisition of 
language, a capacity that develops rapidly from infancy (Bergelson & 
Swingley, 2012). Furthermore, typically developing children acquire 
complex linguistic structures with minimal instruction (Rice, 1989; 
Tomasello, 2003). Stated more generally, humans excel in ‘one-shot 
learning,’ where they form concepts and generalize from minimal, 
sometimes singular, examples (e.g., Xu & Tenenbaum, 2007) - a stark 
contrast to AI’s need for extensive data and iterative training to achieve 
somewhat comparable concept formation (Zhao, Zhao, et al., 2023, 
Zhao, Zhou, et al., 2023; but see Lake et al., 2014). We note recent work 
on the Child’s View for Contrastive Learning model (CVCL) - a deep 
neural network for grounded word learning from slices of one child’s 
egocentric experience - demonstrates that many word-referent map
pings (the connections between words and their real-world objects or 
concepts) present in a child’s everyday experience are learnable through 
relatively generic learning mechanisms from developmentally realistic 
data streams (Vong et al., 2024). Though certainly not consistent with 
one-shot learning, the CVCL model’s ability to acquire word-referent 
mappings, generalize to new visual referents, and align visual and lin
guistic conceptual systems partially reflects the innate human capability 
for rapid, efficient learning from relatively few examples. 

We conclude this section by acknowledging that the degree to which 
learning ability is typically measured by well-established human intel
ligence batteries is rather limited, arguably due to the practical limita
tion of time. A psychologist may devote a maximum of 90 min to test a 
person’s intelligence comprehensively (e.g., WAIS-IV; Wechsler, 2008). 
Consequently, more sophisticated approaches to the measurement of 
individual differences in learning capacity is not feasible. By compari
son, the measurement of individual AI system differences in the capacity 
to learn may be more feasible. Next, we discuss the learning effects 
derived from repeated exposures to intelligence test stimuli, as such 
occurrences are common in AI system development and assessment, 
which can be expected to invalidate the assessments as a test of artificial 
intelligence. 

12. Impact of training on valid intelligence testing 

The Advanced Progressive Matrices (APM; Raven et al., 1998a), 
considered one of the best measures of human fluid reasoning (Gignac, 
2015), is a test that consists of 36 questions, each composed of a 
sequence of visual elements arranged according to abstract rules. People 

must first identify and encode the relevant visual features of the 
matrices, then induce the underlying rules governing the patterns, and 
finally apply those rules to generate a solution to determine the element 
that logically follows in the series. Carpenter et al. (1990) identified five 
analytic rules underlying the cognitive processes for solving APM items, 
distinguishing two simple, less predictive rules (constant in a row and 
quantitative pairwise progression) from three more complex, predictive 
ones (figure addition or subtraction, distribution of three values, and 
distribution of two values).17 Matzen et al. (1994) found that the diffi
culty of each matrix reasoning question depends on the number and 
complexity of these rules. 

Across several human studies, it has been found that repeated 
exposure to the APM leads to increases in test scores, but not fluid in
telligence. For example, Bors and Vigneau (2003) administered the APM 
(36 questions) to participants on three occasions (≈ 45 day intervals). 
On average, people improved their performance by two additional 
questions answered correctly on occasion two and occasion three. Loz
ano and Revuelta (2020) expanded on Bors and Vigneau (2003) by 
examining if repeated APM test exposures enhance performance through 
the implicit learning of matrix reasoning rules. No improvement in 
ability from such repetitions was found. Instead, they found that im
provers may achieve better familiarity with the test format and/or 
perceptual features. Based on an eye-tracking study, Hayes et al. (2015) 
found that improvements in APM performance through repeated testing 
were largely due to test-taking strategy refinement (based on changes in 
eye-fixation patterns), rather than increases in matrix reasoning ability. 
The research on the APM is consistent with the long established view 
that repeated exposure to test items can compromise the validity of IQ 
test scores (Cane & Heim, 1950; LeGagnoux et al., 1990). 

We previously emphasized the importance of task novelty in intel
ligence testing to ensure scores reflect intelligence rather than 
achievement (Davidson & Downing, 2000; Raaheim & Brun, 1985). 
Practicing tests, or repeated exposure to similar test items, introduces 
factors related to achievement and expertise, thus distorting the scores 
as pure measures of intelligence. Consequently, many standardized in
telligence tests (e.g., Wechsler scales; Wechsler, 2008; ICAR; Condon & 
Revelle, 2014) are regulated with respect to access to the test materials 
to help preserve their validity. By contrast, AI systems are often trained 
on similar or the same test items designed to assess their performance. 

Consider Małkiński and Mańdziuk (2022) review of AI system 
methods for completing matrix reasoning problems. They reported that 
models are specifically trained on Raven’s type matrix questions. 
Furthermore, they stated that the Standard Progressive Matrices (Raven 
et al., 1998b) 60 items is insufficient for the purposes of training an AI 
system (p. 3). The practice of training AI systems on test items appears 
normative in the field of AI (Dahmen et al., 2021), which raises serious 
questions about intelligence demonstration when the AI systems solve 
the corresponding test item problems. Discerning if an AI system dem
onstrates intelligence or just mirrors achievement through extensive 
training is crucial, since intelligence, more than mere training, predicts 
success across diverse real-world contexts (Gottfredson, 2002). 

Relatedly, in the development of large language models (LLMs), data 
leakage is a notable challenge. This issue arises when training data un
intentionally influences the validation set, potentially skewing perfor
mance on benchmark tests (Bussola et al., 2021; Hannun et al., 2021; 
Linjordet & Balog, 2020; Qian et al., 2022). While efforts can be 
employed to help mitigate data leakage, in practice, it is difficult to 
avoid entirely (Lyu et al., 2021). Thus, while LLMs might not be 
explicitly trained on test-specific data, the inadvertent overlap between 
training and test datasets can compromise the unambiguous evaluation 
of their capabilities. 

17 Embretson (2002) later proposed an additional three relatively minor fac
tors that contributed to APM performance, all three of which were perceptual in 
nature (i.e., not reliant upon induction or abstraction). 
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As another relevant example, the programming of goal management 
into AI systems may also limit the possibility of observing true artificial 
intelligence, as goal management is a crucial aspect of abstract problem- 
solving (Carpenter et al., 1990).18 In valid human intelligence testing, 
the person tested is not provided with information pertinent to effective 
goal management. Consider the Tower of Hanoi (TOH) task which in
volves moving increasingly larger blocks from one peg to another (peg 1 
to peg 3), without placing a larger block on a smaller one. Test items 
typically include between three to seven blocks. The TOH is considered 
primarily a measure of Gs and Gf within the CHC model of intelligence 
(Emick & Welsh, 2005; Jewsbury et al., 2016; Zook et al., 2004). Par
ticipants are not informed on how to strategize their approach or 
develop specific strategies for solving the puzzles efficiently. Instead, 
individuals must rely on their own cognitive abilities to devise a plan 
and adjust their strategy as needed, reflecting a more authentic assess
ment of their intelligence. 

By contrast, the Optimal Ordered Problem Solver (OOPS; Schmid
huber, 2004), an AI system capable of solving Tower of Hanoi problems 
successfully, includes preprogrammed algorithms that define how to 
approach, organize, and solve the problems, significantly impacting the 
degree of novelty associated with the task – a defining characteristic of 
fluid intelligence (Carpenter et al., 1990). Thus, the programming 
dictated the system’s goal-setting and problem-solving strategies, in 
contrast with human intelligence testing where goal management and 
strategy development are self-generated and managed. Given the OOPS’ 
programmed instructions, it arguably demonstrated a capacity closer to 
achievement rather than intelligence. 

We end this section with one final note about standardization and 
testing. Recall that standardized tests must be administered in the same 
manner across all occasions and cases, in order to interpret the test 
scores validly. In theory, there should be no problem with administering 
AI system tests such as HumanEval in a completely standardized 
manner, consistent with our operational definition of artificial intelli
gence. However, there is evidence that AI metrics tests are not always 
administered in a standardized manner, with developers choosing 
different environments and parameters for evaluation, which can 
significantly alter the results (Fortis, 2023; Kinsella, 2023; Vedula et al., 
2022). Such variability introduces test biases and inconsistencies, 
making it difficult to directly compare performance outcomes across 
different AI systems or versions. Ensuring the reliability and validity of 
AI test scores necessitates strict adherence to standardized protocols, 
including uniform test sets and evaluation metrics, which is crucial for 
accurately assessing AI systems’ capabilities, limitations, as well as 
investigating the possibility of artificial general intelligence.19 

13. Testing for artificial general intelligence (AGI) 

In practical terms, one approach to testing the possibility of a general 
factor of artificial intelligence is to submit a series of wide ranging tests 
to a large number of different AI systems.20 That is, each AI system 
would undergo a comprehensive battery of tests, with scores recorded 
and analysed for inter-test correlations. Positive correlations among test 

scores would suggest the presence of an AGI factor. Further support for 
an AGI factor would be observed if a factor analysis of the test results 
revealed a single factor with positive loadings across all tests. 

To date, two (unpublished) empirical investigations have reported 
correlations between test performance across AI systems. 

Burnell et al. (2023) estimated the correlations between 27 tasks 
(Holistic Evaluation of Language Models; a.k.a., HELM benchmark) 
completed by 29 language models, including Anthropic-LM v4-s3, 
Cohere Command beta, GPT-3-davinci, and OPT. Burnell et al. (2023) 
reported a positive manifold with a mean inter-task correlation of 0.56, 
consistent with what is typically observed with human intelligence tests 
(Detterman & Daniel, 1989; Walker et al., 2023). Furthermore, an ex
amination of a parallel analysis uncovered three dimensions. Based on a 
factor analysis, the three factors were labelled comprehension (33% 
variance explained), reasoning (31% variance explained), and language 
modeling (17% variance explained). Furthermore, the three factors 
inter-correlated positively (mean r = 0.39), suggesting the presence of a 
artificial general intelligence factor. 

In addition to Burnell et al. (2023), Ilić (2023) reported a factor 
analysis that identified a single statistically significant and meaningful 
factor, based on a larger investigation of 1232 language models that 
completed 22 tasks. All 22 tasks loaded positively onto the factor which 
accounted for 85% of the variance in language model performance. 
Thus, the AGI factor identified by Ilić (2023) was stronger than Burnell 
et al. (2023), as well as stronger than that typically observed for human 
intelligence (Detterman & Daniel, 1989; Walker et al., 2023). Interest
ingly, the correlation between AGI factor scores and the size of the 
language model (i.e., parameter counts) was only 0.49, suggesting that 
model size does not correspond to a proportionate increase in AGI 
ability. Thus, other characteristics, such as model architecture, training 
data diversity, or optimization strategies, might play significant roles in 
the manifestation of AGI. 

We note that, to date, no spatial AI factors have been identified, even 
though, in addition to LLMs, there are spatial models designed to process 
and interpret complex spatial data across various domains (e.g., Con
volutional Neural Networks, Gu et al., 2018). Additionally, the Large 
Language and Vision Assistant (LLaVA; Liu, Li, et al., 2023), an end-to- 
end trained multimodal model that combines a vision encoder with an 
LLM for general-purpose visual (and language) processing, could po
tential solve basic visual intelligence test problems (e.g., Identical Pic
tures Test, Ekstrom et al. (1976); Mooney Face Detection Task, 
Verhallen & Mollon, 2016). Thus, in theory, a spatial artificial intelli
gence factor may be identified in future work. 

In light of Burnell et al. (2023) and Ilić (2023), it may be suggested 
that there is tentative empirical evidence for the presence of AGI, or ‘AI 
metric g’ more precisely. However, it may be better described as artifi
cial general achievement, as there are serious questions relevant to 
whether AI systems have in fact demonstrated intelligence, as discussed 
above. Additionally, in a manner similar to question marks over the 
plausibility of psychometric g (Ceci, 1990; Detterman, 1982), we 
knowledge that the empirical observation of AI metric g does not fully 
substantiate the construct of AGI, as multidimensional artificial intelli
gence may be better represented as a network model, as per human 
intelligence (McGrew et al., 2023). 

Given the unsettled debates surrounding the interpretation of the 
positive manifold and the corresponding general factor of human in
telligence (e.g., Gignac, 2016; van der Maas & Kan, 2016), the prospects 
emerging from the observation of a positive manifold for AI system 
performance are intriguing. Specifically, there may be unique opportu
nities to empirically test theories of general intelligence through 
experimental manipulation in ways that are not feasible with human 
subjects. For example, by systematically varying the processing speed 
and efficiency of AI systems, researchers can directly observe the effects 
on the strength and structure of the correlations between abilities, of
fering insights into whether these correlations—and by extension, a 
general intelligence factor—arise from underlying information 

18 Carpenter et al. (1990, p. 428): “a key component of analytic intelligence is 
goal management, the process of spawning subgoals from goals, and then 
tracking the ensuing successful and unsuccessful pursuits of the subgoals on the 
path to satisfying higher level goals.” And “The use or organization of goals is a 
strategic level of thought, possibly involving metacognition or requiring 
reflection.”  
19 The field of AI metrics is only nascent, with no apparent awareness of 

formal measurement properties including reliability and validity, even among 
the most recently published tests (e.g., PromptBench; MarkTechPost, 2023). 
20 An AI system is considered to encompass a wide range of artificial intelli

gence applications, from LLMs to visual recognition systems, and even more 
integrated systems that combine multiple types of AI. 
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processing mechanisms (as per Anderson, 1992, 2001). Over time, these 
types of experiments could narrow the divide between intelligence 
theories and actual data, possibly confirming the significance of central 
processing in both AI and human intelligence, for example. Ultimately, 
the ability of AI systems to complete a diversity of tests akin to human IQ 
assessments may not only illuminate AI’s cognitive framework when 
analysed with methods well-established in human psychology, but also 
possibly deepen our understanding of human intelligence. 

14. Memory span and intelligence 

Memory span, defined as the maximum number of items a person can 
recall after a single exposure, usually within a brief period of about two 
seconds (Baddeley, 1990), is recognised as a key cognitive ability within 
models of human intelligence (Gignac, 2018). Notably, working mem
ory, which involves the capacity to hold and manipulate information 
mentally, has been shown to be closely associated with fluid reasoning, 
sharing approximately 50% of its variance (Kane et al., 2005). 
Furthermore, some research posits that working memory and general 
intelligence might be nearly indistinguishable, or isomorphic (Colom 
et al., 2004). While the precise magnitude of the influence of memory 
span on problem-solving ability, which serve as critical markers of in
telligence, continues to be debated, compelling evidence suggests that 
this effect is appreciable and likely causal (Hagemann et al., 2023). 

It is interesting to observe that the AI literature on the nature of in
telligence rarely ever recognises the potential role of memory span, 
given that an LLM’s context window may be considered conceptually 
similar to human short-term memory. Context windows limit the num
ber of text tokens LLMs can reference at once for generating responses or 
analysing input. This window is crucial for maintaining consistency and 
coherence in conversations or tasks, as it determines the extent of prior 
information the model can utilize. Thus, the similarities between context 
windows and human memory span include the limited capacity to hold 
information, focusing on the most recent or immediately relevant data 
for current tasks, and the mechanism of forgetting older information as 
new data comes in. Interestingly, LLM’s appear to manifest primacy and 
recency effects in a manner similar to that observed in humans (Liu, Lin, 
et al., 2023). AI systems other than LLMs have mechanisms similar to 
context windows, such as the memory cells in Long Short-Term Memory 
(LSTM) networks used in sequence modeling (Yu et al., 2019), the field 
of view in Convolutional Neural Networks for image processing (Samy 
et al., 2018), and the state perception in Reinforcement Learning agents 
(Sheng et al., 2022). 

In light of the above, it is noteworthy that Burnell et al. (2023) did 
not identify a factor relevant to memory span. This could be because 
none of the AI benchmark tests directly measure a dimension akin to 
memory span, an arguably noteworthy limitation, in our view. Given the 
variability in memory retrieval capacities across AI systems,21 it is 
reasonable to postulate the plausibility of an AI memory span factor. 
Additionally, such a factor might be relatively clearly characterized as 
an aspect of intelligence; or, at least, it would not be obviously consid
ered a dimension of achievement. If an AI system memory span 
dimension is observed to correlate positively with other AI system per
formance dimensions, it could support the plausibility of our novel 
conceptualisation of AGI, which parallels human general intelligence. A 
similar argument could be made for AI system processing speed, given 
the important role processing speed has played in the human 

intelligence literature (Gignac, 2018). Further research to address these 
possibilities is encouraged. 

15. AGI and predictive validity 

Human intelligence, encompassing both the broad measure of psy
chometric g and specific cognitive abilities, is a vital psychological 
construct, valued not merely for indicating performance on a range of 
intelligence tests but more so for its ability to predict key social out
comes. Research has consistently shown that general intelligence is a 
strong predictor of critical factors such as academic success (Pokropek 
et al., 2022), educational and occupational attainment (Salgado et al., 
2003; Strenze, 2007), income and financial stability (Shaffer, 2020; 
Zagorsky, 2007), as well as essential aspects of personal safety and 
health, including risk assessment in daily life (e.g., avoiding fatal acci
dents; O’Toole, 1990) and overall longevity (Gottfredson & Deary, 
2004). This extensive predictive ability, a hallmark of criterion validity, 
underscores the significance of psychometric g: it is not just a measure of 
how people perform on intelligence tests, but a robust indicator of future 
behaviour, outcomes, and achievements in diverse life domains. 

Ideally, to fully validate the constructs of AI and AGI, it would be 
necessary to demonstrate their predictive validity through a set of 
complex, socially valuable criteria tailored to their unique functions. 
These criteria could include their efficacy in driving technological and 
scientific advancements, boosting human productivity, and improving 
overall quality of life. Admittedly, identifying suitable predictive val
idity criteria in the AI context presents a significant challenge, given the 
tremendously diverse nature of AI applications. Nonetheless, further 
research is encouraged in AI metrics to develop and refine these criteria, 
ensuring they justifiably reflect the impact and utility of AI systems in 
diverse real-world scenarios. 

16. Conclusion 

AI systems have demonstrated their capability to solve cognitive 
ability test problems, primarily through guided training (e.g., Zhuo & 
Kankanhalli, 2020) or programmed approaches to transform problems 
into algorithmically solvable formats (e.g., Schmidhuber, 2004). While 
remarkable, it is debatable whether these accomplishments signify in
telligence, given that the capabilities of most current AI systems are 
limited to specific programming and/or training data, without the 
necessary demonstration of novel problem-solving ability characteristic 
of human intelligence (Davidson & Downing, 2000; Raaheim & Brun, 
1985). Consequently, many AI systems might be more aptly recognised 
as having the capacity to exhibit artificial achievement or artificial 
expertise. Despite not reaching the threshold of artificial intelligence, 
artificial achievement and expertise systems should, nonetheless, be 
regarded as remarkable scientific accomplishments, ones that can be 
anticipated to impact many aspects of society in significant ways. 
Furthermore, with clear and coherent conceptualisations and definitions 
of achievement, expertise, intelligence, and general intelligence adopted 
by the fields of psychology and computer science, greater collaborations 
and insights may be facilitated, which may ultimately help bridge the 
gap between artificial and human-like intelligence. 

CRediT authorship contribution statement 

Gilles E. Gignac: Writing – review & editing, Writing – original 
draft, Conceptualization. Eva T. Szodorai: Investigation. 

Declaration of generative AI and AI-assisted technologies in the 
writing process 

During the preparation of this work, the first author used chatGPT in 
order to improve readability of some passages. After using chatGPT, the 
first author reviewed and edited the content as needed and takes full 

21 As of March 8th, 2024, the context window sizes for GPT-3, GPT-3.5-turbo, 
and GPT-4 Turbo are 2048 tokens, 16,385 tokens, and 128,000 tokens 
respectively (OpenAI, 2023, November 6; OpenAI, 2024). Anthropic’s Claude 
2.1 surpasses these, with a capacity to process 200,000 tokens or roughly 
150,000 words, equivalent to about 500 pages of text (Anthropic, 2023, 
November 21). While these specifications may evolve, it underscores the indi
vidual differences in context windows among different LLMs. 

G.E. Gignac and E.T. Szodorai                                                                                                                                                                                                               



Intelligence 104 (2024) 101832

13

responsibility for the content of the publication. 

Declaration of competing interest 

The authors declare that they have no conflict of interest. 

Data availability 

No data was used for the research described in the article. 

References 

Amazon Web Services. 2024 (n.d.). What is AGI? Retrieved January 20th, 2024 from http 
s://aws.amazon.com/what-is/artificial-general-intelligence/. 

Anderson, M. (1992). Intelligence and development: A cognitive theory. Oxford, UK: 
Blackwell.  

Anderson, M. (2001). Conceptions of intelligence. Journal of Child Psychology and 
Psychiatry, 42(3), 287–298. 

Anderson, S. W., Rizzo, M., Shi, Q., Uc, E. Y., & Dawson, J. D. (2005, June). Cognitive 
abilities related to driving performance in a simulator and crashing on the road. In , 
Vol. 3, No. 2005. Driving assessment conference. University of Iowa.  

Anthropic. (2023, November 21). Introducing Claude 2.1. https://www.anthropic. 
com/index/claude-2-1. 

Arden, R., & Adams, M. J. (2016). A general intelligence factor in dogs. Intelligence, 55, 
79–85. 

Baddeley, A. D. (1990). Human memory: Theory and practice. Hillsdale, NJ: Erlbaum.  
Bartholomew, D. J. (2004). Measuring intelligence: Facts and fallacies. Cambridge 

University Press.  
Beaujean, A. A. (2015). John Carroll’s views on intelligence: Bi-factor vs. higher-order 

models. Journal of Intelligence, 3(4), 121–136. 
Bergelson, E., & Swingley, D. (2012). At 6–9 months, human infants know the meanings 

of many common nouns. Proceedings of the National Academy of Sciences, 109(9), 
3253–3258. 

Bors, D. A., & Vigneau, F. (2003). The effect of practice on Raven’s advanced progressive 
matrices. Learning and Individual Differences, 13(4), 291–312. 

Borsboom, D. (2023). Psychological constructs as organizing principles. In L. A. van der 
Ark, W. H. M. Emons, & R. R. Meijer (Eds.), Essays on contemporary psychometrics. 
https://doi.org/10.1007/978-3-031-10370-4_5. Methodology of educational 
measurement and assessment. 

Breit, M., Brunner, M., Molenaar, D., & Preckel, F. (2022). Differentiation hypotheses of 
intelligence: A systematic review of the empirical evidence and an agenda for future 
research. Psychological Bulletin, 148(7–8), 518–554. 

Bryan, V. M., & Mayer, J. D. (2020). A meta-analysis of the correlations among broad 
intelligences: Understanding their relations. Intelligence, 81, Article 101469. 

Burnell, R., Hao, H., Conway, A. R., & Orallo, J. H. (2023). Revealing the structure of 
language model capabilities. arXiv preprint arXiv:2306.10062. 

Bussola, N., Marcolini, A., Maggio, V., Jurman, G., & Furlanello, C. (2021). AI slipping on 
tiles: Data leakage in digital pathology. In Pattern recognition. ICPR international 
workshops and challenges: Virtual event, January 10–15, 2021, proceedings, part I (pp. 
167–182). Springer International Publishing.  

Cane, V. R., & Heim, A. W. (1950). The effects of repeated retesting: III. Further 
experiments and general conclusions. Quarterly Journal of Experimental Psychology, 2 
(4), 182–197. 

Canivez, G. L., & Watkins, M. W. (2010). Investigation of the factor structure of the 
Wechsler Adult Intelligence Scale—Fourth Edition (WAIS–IV): Exploratory and 
higher order factor analyses. Psychological Assessment, 22(4), 827–836. 

Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A 
theoretical account of the processing in the Raven progressive matrices test. 
Psychological Review, 97, 404–431. 

Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. 
Cambridge University Press.  

Carroll, J. B. (2003). The higher-stratum structure of cognitive abilities: Current evidence 
supports g and about ten broad factors. In H. Nyborg (Ed.), The scientific study of 
general intelligence (pp. 5–21). Pergamon.  

Ceci, S. J. (1990). On intelligence...More or less: A bioecological treatise on intellectual 
development. Prentice-Hall.  

Chamorro-Premuzic, T., Furnham, A., & Ackerman, P. L. (2006). Ability and personality 
correlates of general knowledge. Personality and Individual Differences, 41(3), 
419–429. 

Chang, M., Paulson, S. E., Finch, W. H., Mcintosh, D. E., & Rothlisberg, B. A. (2014). Joint 
confirmatory factor analysis of the woodcock-Johnson tests of cognitive abilities, 
and the Stanford-Binet intelligence scales, with a preschool population. Psychology in 
the Schools, 51(1), 32–57. 

Chase, W. G., & Ericsson, K. A. (1982). Skill and working memory. In G. H. Bower (Ed.), 
Vol. 16. The psychology of learning and motivation (pp. 1–58). Academic Press.  

Chi, M. T. H. (2006). Two approaches to the study of experts characteristics. In 
K. A. Ericsson, N. Charness, P. Feltovich, & R. Hoffman (Eds.), The Cambridge 
handbook of expertise and expert performance (pp. 21–30). Cambridge, MA: Cambridge 
University Press.  

Chollet, F. (2019). On the measure of intelligence. arXiv preprint arXiv:1911.01547. 

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A., Schoenick, C., & Tafjord, O. 
(2018). Think you have solved question answering? Try ARC, the AI2 reasoning 
challenge. arXiv preprint arXiv:1803.05457. 

Colom, R. (2020). Intellectual abilities. In A. Gallagher, C. Bulteau, D. Cohen, & 
J. Michaud (Eds.), Handbook of clinical neurology: Neurocognitive development - 
normative development (pp. 109–120). Elsevier.  

Colom, R., Rebollo, I., Palacios, A., Juan-Espinosa, M., & Kyllonen, P. C. (2004). Working 
memory is (almost) perfectly predicted by g. Intelligence, 32, 277–296. 

Condon, D. M., & Revelle, W. (2014). The international cognitive ability resource: 
Development and initial validation of a public-domain measure. Intelligence, 43, 
52–64. 

Cormen, T. H. (2013). Algorithms unlocked. MIT Press.  
Crawford, J. R., Deary, I. J., Allan, K. M., & Gustafsson, J. E. (1998). Evaluating 

competing models of the relationship between inspection time and psychometric 
intelligence. Intelligence, 26(1), 27–42. 

Cronbach, L. J. (1960). Essentials of psychological testing (2nd ed.). Harper.  
Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. 

Psychological Bulletin, 52(4), 281–302. 
Croskerry, P., Singhal, G., & Mamede, S. (2013). Cognitive debiasing 1: Origins of bias 

and theory of debiasing. BMJ Quality and Safety, 22(Suppl. 2), 58–64. 
Cucina, J., & Byle, K. (2017). The bifactor model fits better than the higher-order model 

in more than 90% of comparisons for mental abilities test batteries. Journal of 
Intelligence, 5(3), 27. 

Curran, P. J., & Hancock, G. R. (2021). The challenge of modeling co-developmental 
processes over time. Child Development Perspectives, 15(2), 67–75. 

Dahmen, U., Osterloh, T., & Roßmann, J. (2021, December). Generation of virtual test 
scenarios for training and validation of ai-based systems. In In 2021 IEEE 
international conference on Progress in informatics and computing (PIC) (pp. 64–71). 
IEEE.  

Damerius, L. A., Burkart, J. M., van Noordwijk, M. A., Haun, D. B., Kosonen, Z. K., 
Galdikas, B. M., & van Schaik, C. P. (2019). General cognitive abilities in orangutans 
(pongo abelii and Pongo pygmaeus). Intelligence, 74, 3–11. 

Davidson, J. E., & Downing, C. L. (2000). Contemporary models of intelligence. In 
R. J. Sternberg (Ed.), Handbook of intelligence (pp. 34–52). New York, NY: Cambridge 
University Press.  

Deary, I. J. (2020). Intelligence: A very short introduction (2nd ed.). Oxford University 
Press.  

Deary, I. J., Spinath, F. M., & Bates, T. C. (2006). Genetics of intelligence. European 
Journal of Human Genetics, 14(6), 690–700. 

Demasi, P., Szwarcfiter, J. L., & Cruz, A. J. (2010, June). A theoretical framework to 
formalize AGI-Hard problems. In 3d conference on artificial general Intelligence (AGI- 
2010) (pp. 64–65). Atlantis Press.  

DeRose, J. F., Wang, J., & Berger, M. (2020). Attention flows: Analyzing and comparing 
attention mechanisms in language models. IEEE Transactions on Visualization and 
Computer Graphics, 27(2), 1160–1170. 

Detterman, D. K. (1982). Does “g” exist? Intelligence, 6, 99–108. 
Detterman, D. K., & Daniel, M. H. (1989). Correlations of mental tests with each other 

and with cognitive variables are highest for low IQ groups. Intelligence, 13(4), 
349–359. 

Dombrowski, S. C., McGill, R. J., & Canivez, G. L. (2018). Hierarchical exploratory factor 
analyses of the Woodcock-Johnson IV Full Test Battery: Implications for CHC 
application in school psychology. School Psychology Quarterly, 33(2), 235–250. 

Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, D. (1976). Kit of factor- 
referenced cognitive tests. ETS Research and Development. 

Embretson, S. E. (2002). Generating abstract reasoning items with cognitive theory. In 
S. Irvine, & P. Kyllonen (Eds.), Generating items for cognitive tests: Theory and practice 
(pp. 219–250). Mahwah, NJ: Erlbaum.  

Emick, J., & Welsh, M. (2005). Association between formal operational thought and 
executive function as measured by the Tower of Hanoi-Revised. Learning and 
Individual Differences, 15(3), 177–188. 

Ericsson, K. A. (2006). The influence of experience and deliberate practice on the 
development of superior expert performance. In K. A. Ericsson, N. Charness, 
P. Feltovich, & R. Hoffman (Eds.), The Cambridge handbook of expertise and expert 
performance (pp. 683–704). Cambridge, MA: Cambridge University Press.  

Ericsson, K. A., & Staszewski, J. (1989). Skilled memory and expertise: Mechanisms of 
exceptional performance. In D. Klahr, & K. Kotovsky (Eds.), Complex information 
processing: The impact of Herbert A. Simon (pp. 235–267). Hillsdale, NJ: Erlbaum.  

Feng, Y., Lin, J., Dwivedi, S. K., Sun, Y., Patel, P., & Black, M. J. (2023). PoseGPT: 
Chatting about 3D human pose. arXiv preprint arXiv:2311.18836. 

Flake, J. K., & Fried, E. I. (2020). Measurement schmeasurement: Questionable 
measurement practices and how to avoid them. Advances in Methods and Practices in 
Psychological Science, 3(4), 456–465. 

Flanagan, D. P., & Dixon, S. G. (2013). The Cattell-Horn-Carroll theory of cognitive 
abilities. In C. Reynolds, K. Vannest, & E. Fletcher-Janzen (Eds.), Encyclopedia of 
special education: A reference for the education of children, adolescents, and adults with 
disabilities and other exceptional individuals (4th ed.). Wiley.  

Fortis, S. (2023, December 7). Is Google’s Gemini smarter than OpenAI’s Chatgpt? 
Community sleuths find out. Cointelegraph. https://cointelegraph.com/news/is 
-google-s-gemini-really-smarter-than-openai-s-gpt-4-community-sleuths-find-out.  

Fry, A. F., & Hale, S. (1996). Processing speed, working memory, and fluid intelligence: 
Evidence for a developmental cascade. Psychological Science, 7, 237–241. 

Gabora, L., & Russon, A. (2011). The evolution of human intelligence. In R. Sternberg, & 
S. Kaufman (Eds.), The Cambridge handbook of intelligence (pp. 328–350). Cambridge 
University Press.  

G.E. Gignac and E.T. Szodorai                                                                                                                                                                                                               

https://aws.amazon.com/what-is/artificial-general-intelligence/
https://aws.amazon.com/what-is/artificial-general-intelligence/
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0005
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0005
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0010
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0010
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0015
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0015
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0015
https://www.anthropic.com/index/claude-2-1
https://www.anthropic.com/index/claude-2-1
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0025
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0025
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0030
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0035
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0035
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0040
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0040
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0045
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0045
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0045
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0050
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0050
https://doi.org/10.1007/978-3-031-10370-4_5
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0060
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0060
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0060
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0065
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0065
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0070
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0070
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0075
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0075
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0075
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0075
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0080
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0080
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0080
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0085
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0085
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0085
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0090
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0090
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0090
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0095
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0095
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0100
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0100
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0100
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0105
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0105
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0110
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0110
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0110
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0115
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0115
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0115
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0115
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0120
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0120
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0125
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0125
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0125
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0125
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0130
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0135
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0135
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0135
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0140
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0140
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0140
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0145
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0145
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0150
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0150
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0150
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0155
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0160
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0160
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0160
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0165
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0170
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0170
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0175
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0175
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0180
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0180
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0180
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0185
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0185
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0190
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0190
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0190
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0190
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0195
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0195
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0195
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0200
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0200
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0200
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0205
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0205
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0210
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0210
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0215
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0215
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0215
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0220
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0220
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0220
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0225
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0230
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0230
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0230
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0235
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0235
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0235
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0240
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0240
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0245
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0245
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0245
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0250
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0250
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0250
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0255
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0255
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0255
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0255
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0260
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0260
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0260
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0265
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0265
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0270
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0270
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0270
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0275
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0275
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0275
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0275
https://cointelegraph.com/news/is-google-s-gemini-really-smarter-than-openai-s-gpt-4-community-sleuths-find-out
https://cointelegraph.com/news/is-google-s-gemini-really-smarter-than-openai-s-gpt-4-community-sleuths-find-out
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0285
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0285
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0290
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0290
http://refhub.elsevier.com/S0160-2896(24)00026-6/rf0290


Intelligence 104 (2024) 101832

14

Gardner, H., & Hatch, T. (1989). Multiple intelligences go to school: Educational 
implications of the Theory of multiple intelligences. Educational Researcher, 18(8), 
4–10. 

Gignac, G. E. (2008). Higher-order models versus direct hierarchical models: g as 
superordinate or breadth factor? Psychology Science, 50(1), 21–43. 

Gignac, G. E. (2015). Raven’s is not a pure measure of general intelligence: Implications 
for g factor theory and the brief measurement of g. Intelligence, 52, 71–79. 

Gignac, G. E. (2016). On the evaluation of competing theories: A reply to van der Maas 
and Kan. Intelligence, 57, 84–86. 

Gignac, G. E. (2018). Conceptualizing and measuring intelligence. In V. Zeigler-Hill, & 
T. Shackelford (Eds.), Vol. 1. The SAGE handbook of personality and individual 
differences (pp. 439–464). Sage.  

Gignac, G. E., & Weiss, L. G. (2015). Digit span is (mostly) related linearly to general 
intelligence: Every extra bit of span counts. Psychological Assessment, 27(4), 
1312–1323. 

Gobet, F., & Sala, G. (2023). Cognitive training: A field in search of a phenomenon. 
Perspectives on Psychological Science, 18(1), 125–141. 

Gobet, F., & Simon, H. A. (1998). Expert chess memory: Revisiting the chunking 
hypothesis. Memory, 6(3), 225–255. 

Goertzel, B. (2010). Toward a formal characterization of real-world general intelligence. 
In Proceedings of the 3d conference on artificial general Intelligence (2010) (pp. 74–79). 
Atlantis Press.  

Goertzel, B. (2014). Artificial general intelligence: Concept, state of the art, and future 
prospects. Journal of Artificial General Intelligence, 5(1), 1–46. 

Goertzel, B., & Yu, G. (2014, July). From here to AGI: A roadmap to the realization of 
human-level artificial general intelligence. In 2014 international joint conference on 
neural networks (IJCNN) (pp. 1525–1533). IEEE.  

Gottfredson, L. S. (1997). Mainstream science on intelligence: An editorial with 52 
signatories, history, and bibliography. Intelligence, 24(1), 13–23. 

Gottfredson, L. S. (2002). G: Highly general and highly practical. In R. J. Sternberg, & 
E. L. Grigorenko (Eds.), The general factor of intelligence: How general is it? (pp. 
331–380). Erlbaum.  

Gottfredson, L. S., & Deary, I. J. (2004). Intelligence predicts health and longevity, but 
why? Current Directions in Psychological Science, 13(1), 1–4. 

Grafen, A. (2015). Biological fitness and the fundamental theorem of natural selection. 
The American Naturalist, 186(1), 1–14. 

Grudnik, J. L., & Kranzler, J. H. (2001). Meta-analysis of the relationship between 
intelligence and inspection time. Intelligence, 29(6), 523–535. 

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., … Chen, T. (2018). Recent 
advances in convolutional neural networks. Pattern Recognition, 77, 354–377. 

Hagemann, D., Ihmels, M., Bast, N., Neubauer, A. B., Schankin, A., & Schubert, A. L. 
(2023). Fluid intelligence is (much) more than working memory capacity: An 
experimental analysis. Journal of Intelligence, 11(4), 70. 

Halpern, D. F. (2014). Thought and knowledge: An introduction to critical thinking (5th ed.). 
Taylor & Francis.  

Hannun, A., Guo, C., & van der Maaten, L. (2021, December). Measuring data leakage in 
machine-learning models with fisher information. In Uncertainty in artificial 
Intelligence (pp. 760–770). PMLR.  

Hayes, T. R., Petrov, A. A., & Sederberg, P. B. (2015). Do we really become smarter when 
our fluid-intelligence test scores improve? Intelligence, 48, 1–14. 

Horn, J. L. (1989). Models of intelligence. In R. L. Linn (Ed.), Intelligence: Measurement, 
theory, and public policy (pp. 29–73). University of Illinois Press.  

Huang, T. J. (2017). Imitating the brain with neurocomputer a “new” way towards 
artificial general intelligence. International Journal of Automation and Computing, 14 
(5), 520–531. 

Humphreys, L. G. (1984). General intelligence. In C. R. Reynolds, & R. T. Brown (Eds.), 
Perspectives on Bias in mental testing (pp. 221–247). Springer.  
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(2022). Types of intelligence and academic performance: A systematic review and 
meta-analysis. Journal of Intelligence, 10(4), 123. 

Lu, Y., Xu, D., Wang, L., Hartley, R., & Li, H. (2010, July). Illumination invariant 
sequential filtering human tracking. In , Vol. 4. In 2010 international conference on 
machine learning and cybernetics (pp. 2133–2138). IEEE.  

Lüdtke, O., & Robitzsch, A. (2022). A comparison of different approaches for estimating 
cross-lagged effects from a causal inference perspective. Structural Equation Modeling: 
A Multidisciplinary Journal, 29(6), 888–907. 

Luppi, A. I., Mediano, P. A., Rosas, F. E., Holland, N., Fryer, T. D., O’Brien, J. T., … 
Stamatakis, E. A. (2022). A synergistic core for human brain evolution and cognition. 
Nature Neuroscience, 25(6), 771–782. 

Lykken, D. T. (2005). Mental energy. Intelligence, 33(4), 331–335. 
Lyu, Y., Li, H., Sayagh, M., Jiang, Z. M., & Hassan, A. E. (2021). An empirical study of the 

impact of data splitting decisions on the performance of AIOps solutions. ACM 
Transactions on Software Engineering and Methodology (TOSEM), 30(4), 1–38. 

van der Maas, H. L., Kan, K. J., Marsman, M., & Stevenson, C. E. (2017). Network models 
for cognitive development and intelligence. Journal of Intelligence, 5(2), 16. 
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